TopKCategoricalAccuracy#
- class ignite.metrics.TopKCategoricalAccuracy(k=5, output_transform=<function TopKCategoricalAccuracy.<lambda>>, device=device(type='cpu'))[source]#
Calculates the top-k categorical accuracy.
update
must receive output of the form(y_pred, y)
or{'y_pred': y_pred, 'y': y}
.
- Parameters
k (int) – the k in “top-k”.
output_transform (Callable) – a callable that is used to transform the
Engine
’sprocess_function
’s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as(y_pred, y)
or{'y_pred': y_pred, 'y': y}
.device (Union[str, torch.device]) – specifies which device updates are accumulated on. Setting the metric’s device to be the same as your
update
arguments ensures theupdate
method is non-blocking. By default, CPU.
- Return type
Examples
To use with
Engine
andprocess_function
, simply attach the metric instance to the engine. The output of the engine’sprocess_function
needs to be in the format of(y_pred, y)
or{'y_pred': y_pred, 'y': y, ...}
. If not,output_tranform
can be added to the metric to transform the output into the form expected by the metric.from collections import OrderedDict import torch from torch import nn, optim from ignite.engine import * from ignite.handlers import * from ignite.metrics import * from ignite.utils import * from ignite.contrib.metrics.regression import * from ignite.contrib.metrics import * # create default evaluator for doctests def eval_step(engine, batch): return batch default_evaluator = Engine(eval_step) # create default optimizer for doctests param_tensor = torch.zeros([1], requires_grad=True) default_optimizer = torch.optim.SGD([param_tensor], lr=0.1) # create default trainer for doctests # as handlers could be attached to the trainer, # each test must defined his own trainer using `.. testsetup:` def get_default_trainer(): def train_step(engine, batch): return 0.0 return Engine(train_step) # create default model for doctests default_model = nn.Sequential(OrderedDict([ ('base', nn.Linear(4, 2)), ('fc', nn.Linear(2, 1)) ])) manual_seed(666)
def process_function(engine, batch): y_pred, y = batch return y_pred, y def one_hot_to_binary_output_transform(output): y_pred, y = output y = torch.argmax(y, dim=1) # one-hot vector to label index vector return y_pred, y engine = Engine(process_function) metric = TopKCategoricalAccuracy( k=2, output_transform=one_hot_to_binary_output_transform) metric.attach(engine, 'top_k_accuracy') preds = torch.Tensor([ [0.7, 0.2, 0.05, 0.05], # 1 is in the top 2 [0.2, 0.3, 0.4, 0.1], # 0 is not in the top 2 [0.4, 0.4, 0.1, 0.1], # 0 is in the top 2 [0.7, 0.05, 0.2, 0.05] # 2 is in the top 2 ]) target = torch.Tensor([ # targets as one-hot vectors [0, 1, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0] ]) state = engine.run([[preds, target]]) print(state.metrics['top_k_accuracy'])
0.75
Methods
Computes the metric based on it's accumulated state.
Resets the metric to it's initial state.
Updates the metric's state using the passed batch output.
- compute()[source]#
Computes the metric based on it’s accumulated state.
By default, this is called at the end of each epoch.
- Returns
- the actual quantity of interest. However, if a
Mapping
is returned, it will be (shallow) flattened into engine.state.metrics whencompleted()
is called. - Return type
Any
- Raises
NotComputableError – raised when the metric cannot be computed.
- reset()[source]#
Resets the metric to it’s initial state.
By default, this is called at the start of each epoch.
- Return type
- update(output)[source]#
Updates the metric’s state using the passed batch output.
By default, this is called once for each batch.
- Parameters
output (Sequence[torch.Tensor]) – the is the output from the engine’s process function.
- Return type